

УДК 543.42:547.413

Я.В. Веремейчик, Д.Н. Шурпик Г.С. Куприянова, В.В. Племенков

СТРУКТУРНАЯ ИДЕНТИФИКАЦИЯ СУЛЬФОНАМИДОВ МЕТОДАМИ ИК И ЯМР СПЕКТРОСКОПИИ

Комплексным использованием методов ИК спектроскопии и спектроскопии ЯМР ¹Н установлены структуры сульфонамидных препаратов нового типа. Данная методология предложена в качестве общего подхода к структурной идентификации веществ фармацевтического профиля.

Structures of new type of sulfonamide preparations were determined complex using methods of IR spectroscopy and ¹H NMR spectroscopy. This methodology proposed as a general approach for structural identification of the pharmaceutical substances.

Ключевые слова: ИК спектроскопия, спектроскопия ЯМР, сульфинамиды, сульфонамиды.

Key words: IR spectroscopy, NMR spectroscopy, sulfonamides.

Сульфонамиды — хорошо известный класс фармацевтических препаратов [1; 2], в настоящее время переживающий свое второе рождение в связи с развитием новых синтетических протоколов и методик фармакологических исследований. Постоянно публикуются работы, в которых описываются синтезы и приводятся данные медико-биологических испытаний новых соединений с сульфамидным фрагментом — как правило, это вещества сложной молекулярной структуры, полученные многостадийными превращениями (см., например, [3]) и требующие структурного доказательства, которое осуществляется с помощью комплексного использования физических методов, в первую очередь спектроскопических.

Нами был разработан новый синтетический подход к сульфамидным субстанциям новой структуры [4; 5] — реакции тиониланилинов с норборненом, протекающие по схеме Дильса — Альдера (рис. 1), с образованием тиазин-сульфинамидов (a) и с последующим окислением их до соответствующих сульфонамидов (\bar{b}), структура которых определялась на основе данных ИК спектроскопии и спектроскопии ЯМР 1 H.

Анализ данных ИК спектроскопии всех полученных соединений позволил достаточно однозначно определить наличие N–H, S = O и SO₂ функциональных групп в их структурах, поскольку все они описываются характеристическими частотами валентных колебаний сильной интенсивности: $3140-3270~{\rm cm}^{-1}$ для N–H связи, $1050-1060~{\rm cm}^{-1}$ для сульфоксидной S=O связи, $1130-1140~{\rm u}$ $1300-1330~{\rm cm}^{-1}$ для SO₂ группы [6]. Присутствие в ИК спектрах всех изученных соединений полос поглощения в области $2850-3050~{\rm cm}^{-1}$, характерных для С–H связей тригонального и тетрагонального углеродов, имеет подтверждающий наличие соответствующих углеводородных фрагментов в синтезирован-

53

ных соединениях (рис. 1-3). Следует отметить удобность применения ИК спектральных измерений для контроля реакций окисления сульфинамидов (рис. 1, a) до соответствующих сульфонамидов (рис. 1, δ) по исчезновению в спектрах полос поглощения характеристических колебаний сульфоксидной группы и появления полос поглощения, характерных для сульфонной функции.

$$X = H, CH_3, OCH_3, NO_2$$

Рис. 1. Схема образования сульфинамидов (а) и сульфонамидов (б)

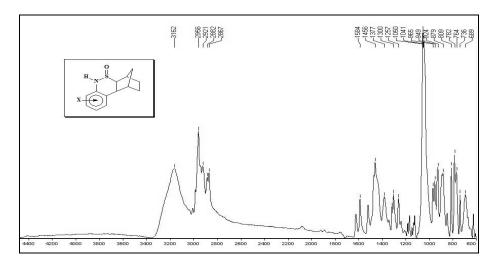


Рис. 2. ИК спектр толуидин-сульфинамида

По характеру углеродного скелета соединения ряда a и δ (рис. 1) представлены двумя фрагментами — бензольным и насыщенным бициклическим, сигналы ПМР которых проявляются в неперекрывающихся областях спектров (рис. 4). Протоны бензольного цикла резонируют в слабых полях ($\delta=7\pm0.5$ м.д.), протоны тетрагонального углерода резонируют в значительно более сильных полях ($\delta=1-3.5$ м.д.) [7]. В указанных выше соединениях структура бициклического фрагмента описывается сигналами протонов: при углеродах C^5 и C^6 АВ системой в области $\delta=3-3.6$ м.д. (2H, $^3J=8.4-8.8$ Гц); при углеродах C^7 и C^8 синглетами в области $\delta=2.2-2.5$ м.д. (2H); при углеродах C^9 и C^{10} мультиплетом в области $\delta=1.4-1.7$ м.д. (4H); при атоме углерода C^{11} АВ системой в области $\delta=0.95-1.6$ м.д. (2H, $^2J=9.9$ Гц).

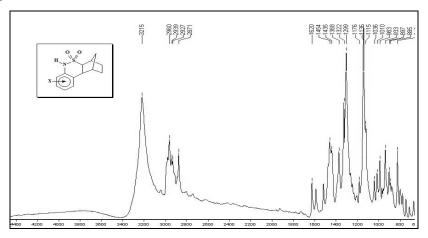


Рис. 3. ИК спектр толуидин-сульфонамида

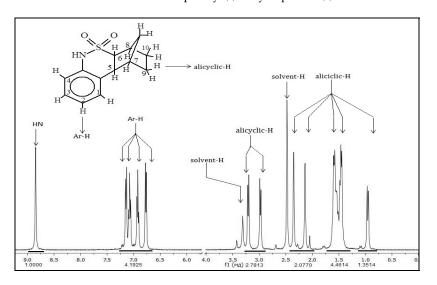


Рис. 4. Спектр ЯМР 1 Н

В принципе, сохранение структуры [2.2.1] — бициклического фрагмента (рис. 1, *a*, *б*) при образовании сульфинамидов и сульфонамидов из тиониланилинов и норборнена согласуется с механизмом реакции Дильса — Альдера, тогда как строение ароматического фрагмента требует своего подтверждения, а в случае метазамещенных — и уточнения, ввиду возможной структурной изомерии продуктов.

Химическая неидентичность всех атомов водорода бензольного фрагмента приводит к тому, что их сигналы в спектрах ЯМР 1 Н достаточно хорошо разрешены как по химическим сдвигам, так и по спинспиновому взаимодействию. Если в незамещенном бензотиазиновом производном (рис. 1, a) сигналы четырех протонов ароматического цикла представлены двумя дублетами и двумя триплетами с характерными для этой системы значениями КССВ (3 Ј = 7 ,2 $^-$ 8,8 Гц), то при введение любого заместителя в бензольное кольцо картина будет меняться

55

в зависимости от его структурного положения. Во всех случаях это будет уже трехпротонная система, которая имеет вид, характерный для каждого случая замещения, независимо от химической природы заместителя и валентного состояния атома серы (сульфонное или сульфиновое): при 1-X система сигналов протонов $H^2H^3H^4$ представлена двумя дублетами и одним триплетом (без учета дальних КССВ, $^4J_{\rm HH}$ и т.д.), при 2-X система протонов $H^1H^3H^4$ — одним синглетом и двумя дублетами, при 3-X система протонов $H^1H^2H^4$ — также одним синглетом и двумя дублетами, при 4-X система протонов $H^1H^2H^3$ — одним триплетом и двумя дублетами (рис. 5).

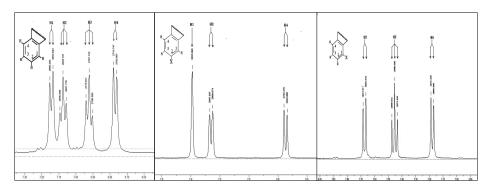


Рис. 5. Фрагменты спектров ЯМР ¹Н в области резонанса бензольных протонов

Идентичность характера расщепления в случае 1-X и 4-X, как и в случае 2-X и 3-X, не мешает их структурной идентификации, поскольку синтезируются эти соединения из разных структурных изомеров исходных тиониланилинов. В свою очередь, в тех случаях когда в одной реакции возможно образование двух структурных изомеров, анализ спектра ЯМР ¹H в области резонанса ароматических протонов позволяет провести однозначный выбор. Так, в реакции метазамещенных тиониланилинов принципиально происходит образование двух изомеров — 1-X и 3-X, не совпадающих по структуре с трехпротонной системой бензольного цикла, H²H³H⁴ и H¹H²H⁴ соответственно.

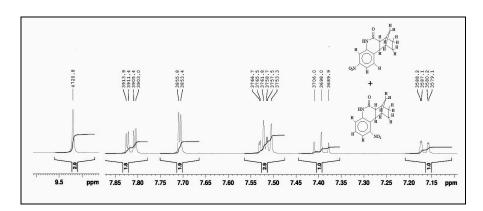


Рис. 6. Спектр ЯМР ¹Н

Следует отметить, что дальние КССВ $^4J_{\rm HH}$ могут быть также использованы для отнесения сигналов атомов водородов, в тех случаях, когда они проявляются, как это было сделано выше (рис. 6) при анализе спектра ЯМР 1 Н изомерной смеси 1-NO₂ (A) и 3-NO₂ (A).

Данные ИК и ЯМР спектров соединений рядов сульфинамидов и сульфонамидов

2	ИК, ү см- ¹			ЯМР ¹ Н, б м.д. (³ І Гц)				
Замес-	γnh	γs=0	γso_2	H^1	H^2	H ³	H^4	N-H
титель	Х в ряду сульфинамидов							
Н	3165	1054	I	6,5 (д. 7,9)	6,65 (r. 7,3)	6,79 (T. 7,2)	6,91 (д. 7,2)	8,70 (c.)
2-CH ₃	3147	1056	ı	6,95 (c.)	1	6,67 (д. 7,3)	6,90 (д. 7,3)	8,85 (c.)
2-OCH ₃	3179	1058	ı	6,52 (c.)	1	6,57 (д. 8,4)	6,67 (д. 8,8)	8,65 (c.)
2-NO ₂	3166	1050	ı	7,02 (c.)	1	6,80 (д. 8,7)	7,98 (д. 8,7)	8,10 (c.)
1-CH ₃	3162	1050	ı	_	6,76 (д. 7,5)	7,10 (T. 7,8)	6,93 (д. 7,8)	8,85 (c.)
1-NO ₂	3137	1049	ı	_	7,17 (д. 7,9)	7,39 (t. 8,0)	7,53 (д. 8,)	9,50 (c.)
3-CH ₃	3161	1051	_	7,14 (д. 7,6)	6,86 (д. 7,6)	_	6,68 (c.)	8,87 (c.)
3-NO ₂	3137	1049	_	7,82 (д. 8,4)	7,51 (д. 8,5)	_	7,71 (c.)	9,50 (c.)
4-CH ₃	3242	1062	_	6,99 (д. 8,2)	6,83 (T. 7,5)	6,96 (д. 9,3)	_	8,25 (c.)
Х в ряду сульфонамидов								
3-CH ₃			1299					
	3215	_	1136	6,83 (д. 8,6)	7,12 (д. 8,8)	_	6,59 (c.)	9,75 (c.)
2 -OCH $_3$			1300					
	3234	_	1131	6,71 (c.)	1	6,82 (д.7,10)	6,72 (д. 7,1)	9,45 (c.)
$2-NO_2$			1326					
	3265	_	1132	7,05 (c.)	-	6,94 (д. 8,0)	6,65 (д. 8,1)	9,15 (c.)
1-NO ₂			1324					
	3194	_	1132	_	7,70 (д. 8,2)	7,36 (т. 8,0)	7,24 (д. 7,9)	10,65 (c.)

Экспериментальная часть. Сульфинамиды (рис. 1, *a*) были синтезированы смешением соответствующих тиониланилинов с норборненом в соотношении 1:1,5 при комнатной температуре в атмосфере аргона. Смеси выдерживались в запаянной ампуле в течение нескольких суток (при нагревании до 100° С — в течение нескольких часов). Выделенные кристаллы перекристаллизовывали из этанола.

Сульфонамиды (рис. 1, δ) были получены действием трехкратного количества 30 % перекиси водорода на сульфинамиды (рис. 1, a) в растворе ледяной уксусной кислоты при комнатной температуре в течение нескольких суток. После концентрирования рабочих растворов выделялись кристаллы, которые очищали перекристаллизацией из этанола. ИК спектры кристаллических образцов в таблетках КВг записаны на ИК-Фурье спектрометре Bruker Vertex 70.

Спектры ЯМР 1 Н 2-3%-ных растворов веществ в d_{6} -ДМСО были записаны на спектрометре «Varian 400» (рабочая частота -400 МГц).

Заключение. Комплексное применение методов ИК спектроскопии и спектроскопии ЯМР ¹Н позволило однозначно идентифицировать структуры сульфамидных соединений нового типа. Данные результа-

ты показывают перспективность использования такого подхода для структурного анализа сложных органических молекул фармацевтического профиля, как уже известных, так и новых.

Список литературы

- 1. Машковский М.Д. Лекарственные средства. 16-е изд. М., 2010.
- 2. Яхонтов Л.Н., Глушков Р.Г. Синтетические лекарственные средства. М., 1983.
- 3. Foss M.H., Hurley K.A., Sorto N.A. et al. Weibel N-Benzyl-3-sulfonamidopyrrolidines are a new class of bacterial DNA gyrase inhibitors // ACS Medicinal Chemistry Letters. 2011. Vol. 2, № 4. P. 289 292.
- 4. Племенков В.В., Плужнов В.В., Катаев Е.Г. Ароматические тиониламины в реакции диенового синтеза // Журн. органической химии. 1967. Т. 3, № 2. С. 336-341.
- 5. *Plemenkov V.V., Veremeychik Ya.V., Shurpik D.N. et al.* Thionilanilines as Diene Structures in Diels-Alder Reactions // International Congress on Organic Chemistry. Kazan, 2011. P. 175.
- 6. Наканиси К. Инфракрасные спектры и строение органических соединений. М., 1965.
- 7. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. М., 2006.

Об авторах

Яна Валерьевна Веремейчик — науч. сотр., Балтийский федеральный университет им. И. Канта, Калининград.

E-mail: verem_yana@mail.ru

Дмитрий Николаевич Шурпик — студент, Балтийский федеральный университет им. И. Канта, Калининград.

E-mail: galkupr@yandex.ru

Галина Сергеевна Куприянова — д-р физ.-мат. наук, проф., Балтийский федеральный университет им. И. Канта, Калининград.

E-mail: galkupr@yandex.ru

Виталий Владимирович Племенков — д-р хим. наук, проф., Балтийский федеральный университет им. И. Канта, Калининград.

E-mail: plem-kant@yandex.ru

About authors

Yana Veremeychik — research fellow, I. Kant Baltic Federal University, Kaliningrad. E-mail: verem_yana@mail.ru

Dmitry Shurpik — student, I. Kant Baltic Federal University, Kaliningrad. E-mail: galkupr@yandex.ru

Dr Galina Kupriyanova – prof., I. Kant Baltic Federal University, Kaliningrad. E-mail: galkupr@yandex.ru

Dr Vitaly Plemenkov — prof., I. Kant Baltic Federal University, Kaliningrad. E-mail: plem-kant@yandex.ru

57